Federated NBA Learning

John Fattore
Google Colab Link -
https://colab.research.google.com/drive/1 A3377Zb8JivI-HucdIfSA7bRX1ReNx83r?usp=sharing

Abstract: This model is trained through federated learning to predict NBA team win percentages
based on season stats.

Data: All the data is obtained from nba.com/stats/teams/traditional, pasted into a txt file and
organized by a python script. The data contains 6 parameters including 3-Point %, 3-Point
Attempts, Field Goal %, Turnovers, Assists, Offensive Rebounds. The data spans 10 seasons
between 2008 and 2019, split up between training and testing data.

Linear Regression Model: The linear model has 6 parameters: 3-Point %, 3-Point Attempts, Field
Goal %, Turnovers, Assists, and Offensive Rebounds. The linear regression uses weights
assigned to each parameter and an intercept in order to calculate the prediction.

3-Point %

3-Point Att. Field Goal % | Turnovers Assists Off. Rebounds | Intercept

0.388

0.251 0.492 0.148 0.25 0.096 0.0104

Gradient Descent: To optimize the linear regression’s MSE cost function, gradient descent is
utilized. Partial derivatives with respect to each of the weights are calculated and used to make a
“step” closer to an optimized model. Functions that calculate these functions are included in the
google colab link.

Federated Learning: The model is trained using federated learning, more precisely FedSGD.
Federated learning exists to tackle the problem of training models using sensitive user data,
while maintaining privacy. This training algorithm sends a global model to devices that find
gradients based on their local data. These gradients are then averaged together and used to make
the next step. In this distributed learning algorithm, communication costs dominate because
devices are connected through costly wifi and 5G networks, not high speed cable. Training is
done on the edge devices in order to promote privacy, but also to reduce communication costs. A
set of gradients is much less information to communicate compared to training sets. My FedSGD
differs from the FedAvg algorithm (figure 2) because it doesn’t let the local devices iterate
multiple times through the training process.

Learning Rate: The learning rate was set low for the training (0.0000001), partially because the
gradient descent algorithm does not include the small scalar fraction (1/m). This term was
omitted for convenience and is easily compensated for by tweaking the learning rate. The model
is also simple and lowering the learning rate slightly increases model accuracy.

https://colab.research.google.com/drive/1A337Zb8JivI-HucdIfSA7bRX1ReNx83r?usp=sharing

Results: The model performed well enough, with an MAPE score of about 30%, MAE of 0.11,
MSE of 0.0205 and an RMSE of 0.143. The MAPE score is a solid indication of accuracy and
the MAE score means each prediction is off on average 11%. A positive observation is that the
federated and non federated models are nearly identical in performance. The similarities are
aided by the homogeneity of the data, but still supports the practical use of federated learning.
Figure 1 shows how the linear model converges at around 600 epoch. After a certain amount of
iterations, performance plateaus.

2500

2000

w 1500

M5

1000

500 ~

T T T T T
0 500 1000 1500 2000 2500
Epoch

Figure 1: Epoch vs MSE Federated Learning Linear Regression Model

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, F is the number
of local epochs, and 7 is the learning rate.

Server executes:

initialize wy

for eachroundt =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client k£ € S; in parallel do

wy, | + ClientUpdate(k, wy)

My Zkest N
Wil € D kes, %’wfﬂrl /I Erratum®

ClientUpdate(k, w): // Run on client k
B < (split P}, into batches of size B)
for each local epoch 7 from 1 to £ do

for batch b € B do
w — w — nVel(w;b)
return w to server

Figure 2: The Federated Averaging (FedAvg) Algorithm

