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Distributed Learning vs Federated Learning

Welcome to

e Federated Learning is a type
distributed learning Federated

e Both delegate learning, but
different motives

e Privacy and communication cost
vs computational costs

e 10,000s of edge devices vs 10s )
of supercomputers = By

decentralized data.




Motivations for Federated Learning

e Enabled by the decrease of —

= | Server coordinating

communication costs, the training of a

global Al model
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particularly for sensors / edge
devices
e T[rain models on sensitive data
on edge devices without Devices with
compromising privacy oealAlimodes
e Apple can train a health
prediction model using client
data, while maintaining privacy




Communication Costs

e Only eligible clients are
chosen each training round

e Communication over
unmetered WiFi connections
are much cheaper than 5G
wireless networks

e Training can happen at night
when devices are plug in and
connected to their hnome WiFi




FedAvg and FedSGD

Algorithm 1 FederatedAveraging. The K clients are

e 7000+ citations FedAvg! A e
. Server executes:
e FedSGD allows clients to do ntalie
orecachroundt=1.2.... do
one round of training before m + max(C - X, 1)

S; + (random set of m clients)

Send | ng u pd ated Welg htS for each client k£ € S, in parallel do

wy, | + ClientUpdate(k, w;)
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multi o) le rounds of trainin g per ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)
for each local epoch 7 from 1 to £ do

U pdate for batch b € B do

w +— w — NVl (w;b)
return w to server




IID vs Non-IID

lID is uniform and less
complicated to handle
Non-IID are data samples
that do not encompass the
overall distribution

Devices with outlier data will
produce large gradients that
will skew the global model

Normal Distribution




FedProx

e Looks to increase accuracy of model when dataset is
Non-lID and use edge device resources efficiently

e Allows devices to do variable amounts of work

e Proxy value restricts local updates, particularly on devices
with more statistical heterogeneity
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g-FedAvg

e |nspired by observations that while the global model may
have acceptable performance, this accuracy does not
always carry over to each device

e Aims to achieve device-level fairness

Emphasizes devices with higher local loss

e |Improves local accuracy with little effect on global
accuracy




per-FedAvg

e Aimed to provide global model
that is beneficial to all users, like
g-FedAvg

e Takes personalization one step
further, providing a global model
that must be “broken in” before
use

e Global model is trained on local
data to provide user with an
accurate and personalized model




NBA Linear Regression FedSGD

e Model Objective: Predict NBA Team’s Win Percentage
Based on Season Stats

e 0 Features - [3-Point %, 3-Point Attempts, Field Goal %,
Turnovers, Assists, Offensive Rebounds]

e Data - Season stats from the 2000s obtained from
NBA.com

e Average Percent Error (MAPE): 29.36% §&%@ R
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e Average Error (MAE): 11.387




1.

Linear Regression FedSGD Training

# initialze parameters

Random selection of NBA

intercept=0

weights=[-0.01, 0.01, -0.01, 0.01, 0.01, -0.01]

learning_rate = 0.0000001

MSEresults = []

teams chosen to participate in

epoch = 2500

for i in range(epoch):

training

The global model is sent to
each participating NBA team
NBA team trains model using
their local data, finding
gradients for each parameter
Gradients are averaged and
global model makes a “step”,
establishing a new model

federatedGradients = [0, 0, @, 0, 0, 0]
federatedInterceptGradient = @
teamsTraining = ©
# for each team in the nba
for team in nba:
LocalGradients = [0, ©, ©, 0, 0, @]
localIntercept = @
# random teams are sampled to train
sampled = random.randrange(3)
if (sampled == 1):
teamsTraining = teamsTraining + 1
y_predicted = predictY(weights,nba[team],intercept)
scaledGradients = (multiplyListNum(WeightsGradients(nba[team],nbaWins[team],y_predicted), (learning_rate)))
# local gradients calculated
localGradients = (multiplyListNum(scaledGradients, sampled))
scaledInterceptGradient = ((learning_rate) * InterceptGradient(nbaWins[team], y_predicted))
localInterceptGradient = scaledInterceptGradient * sampled
# gradients accululated
federatedGradients = np.add(federatedGradients, localGradients)
federatedInterceptGradient = federatedInterceptGradient + localInterceptGradient

# gradients averaged

federatedGradients = multiplylListNum(federatedGradients, (1/teamsTraining))
federatedInterceptGradient = federatedInterceptGradient / teamsTraining

# once local gradients are averaged together, make a gradient step

weights = np.subtract(weights, federatedGradients)

intercept = intercept - federatedInterceptGradient

MSEresults.append (MSE(yTest, predictY(weights, xTest, intercept)))

print@weights, interceptﬂ

[©.38758917 ©.25064006 ©.49326437 0.15252636 0.25464938 ©.09917967] ©.010554256003817522
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