Federated Learning

John Fattore

Distributed Learning vs Federated Learning

Welcome to

e Federated Learning is a type
distributed learning Federated

e Both delegate learning, but
different motives

e Privacy and communication cost
vs computational costs

e 10,000s of edge devices vs 10s)
of supercomputers = By

decentralized data.

Motivations for Federated Learning

e Enabled by the decrease of —

= | Server coordinating

communication costs, the training of a

global Al model

/f\\

particularly for sensors / edge
devices
e T[rain models on sensitive data
on edge devices without Devices with
compromising privacy oealAlimodes
e Apple can train a health
prediction model using client
data, while maintaining privacy

Communication Costs

e Only eligible clients are
chosen each training round

e Communication over
unmetered WiFi connections
are much cheaper than 5G
wireless networks

e Training can happen at night
when devices are plug in and
connected to their hnome WiFi

FedAvg and FedSGD

Algorithm 1 FederatedAveraging. The K clients are

e 7000+ citations FedAvg! A e
. Server executes:
e FedSGD allows clients to do ntalie
orecachroundt=1.2.... do
one round of training before m + max(C - X, 1)

S; + (random set of m clients)

Send | ng u pd ated Welg htS for each client k£ € S, in parallel do

wy, | + ClientUpdate(k, w;)

Mt < D ks, Tk

® FedAVg a”OWS C|IentS tO dO Wit Zk-esl Sk,] Erratum®

my

multi o) le rounds of trainin g per ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)
for each local epoch 7 from 1 to £ do

U pdate for batch b € B do

w +— w — NVl (w;b)
return w to server

IID vs Non-IID

lID is uniform and less
complicated to handle
Non-IID are data samples
that do not encompass the
overall distribution

Devices with outlier data will
produce large gradients that
will skew the global model

Normal Distribution

FedProx

e Looks to increase accuracy of model when dataset is
Non-lID and use edge device resources efficiently

e Allows devices to do variable amounts of work

e Proxy value restricts local updates, particularly on devices
with more statistical heterogeneity

H

tHQ
w 2 '

|w — w

min hy(w; w') = Fi(w) +

g-FedAvg

e |nspired by observations that while the global model may
have acceptable performance, this accuracy does not
always carry over to each device

e Aims to achieve device-level fairness

Emphasizes devices with higher local loss

e |Improves local accuracy with little effect on global
accuracy

per-FedAvg

e Aimed to provide global model
that is beneficial to all users, like
g-FedAvg

e Takes personalization one step
further, providing a global model
that must be “broken in” before
use

e Global model is trained on local
data to provide user with an
accurate and personalized model

NBA Linear Regression FedSGD

e Model Objective: Predict NBA Team’s Win Percentage
Based on Season Stats

e 0 Features - [3-Point %, 3-Point Attempts, Field Goal %,
Turnovers, Assists, Offensive Rebounds]

e Data - Season stats from the 2000s obtained from
NBA.com

e Average Percent Error (MAPE): 29.36% §&%@ R

\

£

/;q
e Average Error (MAE): 11.387

1.

Linear Regression FedSGD Training

initialze parameters

Random selection of NBA

intercept=0

weights=[-0.01, 0.01, -0.01, 0.01, 0.01, -0.01]

learning_rate = 0.0000001

MSEresults = []

teams chosen to participate in

epoch = 2500

for i in range(epoch):

training

The global model is sent to
each participating NBA team
NBA team trains model using
their local data, finding
gradients for each parameter
Gradients are averaged and
global model makes a “step”,
establishing a new model

federatedGradients = [0, 0, @, 0, 0, 0]
federatedInterceptGradient = @
teamsTraining = ©
for each team in the nba
for team in nba:
LocalGradients = [0, ©, ©, 0, 0, @]
localIntercept = @
random teams are sampled to train
sampled = random.randrange(3)
if (sampled == 1):
teamsTraining = teamsTraining + 1
y_predicted = predictY(weights,nba[team],intercept)
scaledGradients = (multiplyListNum(WeightsGradients(nba[team],nbaWins[team],y_predicted), (learning_rate)))
local gradients calculated
localGradients = (multiplyListNum(scaledGradients, sampled))
scaledInterceptGradient = ((learning_rate) * InterceptGradient(nbaWins[team], y_predicted))
localInterceptGradient = scaledInterceptGradient * sampled
gradients accululated
federatedGradients = np.add(federatedGradients, localGradients)
federatedInterceptGradient = federatedInterceptGradient + localInterceptGradient

gradients averaged

federatedGradients = multiplylListNum(federatedGradients, (1/teamsTraining))
federatedInterceptGradient = federatedInterceptGradient / teamsTraining

once local gradients are averaged together, make a gradient step

weights = np.subtract(weights, federatedGradients)

intercept = intercept - federatedInterceptGradient

MSEresults.append (MSE(yTest, predictY(weights, xTest, intercept)))

print@weights, interceptﬂ

[©.38758917 ©.25064006 ©.49326437 0.15252636 0.25464938 ©.09917967] ©.010554256003817522

Sources

[1] Verbraeken, J., Rellermeyer, J. S., Verbelen, T., Kloppenburg, J.,
Katzy, J., & Wolting, M. (2020, March). A survey on Distributed Ma-
chine Learning. ACM Digital Library. Retrieved April 25, 2023, from
https://dl.acm.org/doi/pdf/10.1145/3377454

[2] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas,
B.A.y. (2023, January 26). Communication-efficient learning of Deep
Networks from Decentralized Data. arXiv.org. Retrieved April 25, 2023,
from https://arxiv.org/abs/1602.05629

[3] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith,
V. (2020, April 21). Federated optimization in Heterogeneous
Networks. arXiv.org. Retrieved April 27, 2023, from

https://arxiv.org/abs/1812.06127

[4] Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2020, February 14). Fair Re-
source Allocation in Federated Learning. arXiv.org. Retrieved May 4, 2023,

from https://arxiv.org/abs/1905.10497

[5] Fallah, A., Mokhtari, A., & Ozdaglar, A. (2020). Personalized federated learning
with theoretical guarantees: A model ... NeurlPS 2020. Retrieved May 4, 2023,
from
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cd
ad-Paper.pdf

[6] Bellwood, L., & McCloud, S. (2016). Google Federated Learning. Google.

Retrieved May 4, 2023, from https://federated.withgoogle.com/

