An Overview of Federated Learning

A Report
Submitted to Dr. Vaezi of
The Department of Electrical and Computer Engineering
Villanova University
by

John Fattore

5G Wireless Networks

|

RS

WE RITaS#] [y ARITAS

W

1842

VILLANOVA

UNIVERSITY

5/10/2023

Contents
1 Abstract

2 Background
2.1 Distributed Learning
2.2 Federated Learning vs Distributed Learning
2.3 5G/6G and Federated Learning L.
24 TIDvs Non-IID 0 o0 o

3 Federated Learning
3.1 FedSGD and FedAvg
3.2 FedProx e
3.3 qg-FedAvg . . .
34 per-FedAvg

4 Case Study: NBA FedSGD
4.1 Federated vs Centralized Learning
4.2 Model Improvements

4.3 Evaluation s,

1 Abstract

Since Google coined the term federated learning in 2016, the training method has blossomed
in popularity as a way to train a centralized model using decentralized data. A centralized
model collects data and trains the model all in one place. Federated learning provides privacy
because rather than sending data to a central server, a model is sent to local devices to be
trained. Communication cost are the largest road block for federated learning, but advances
in wireless networks has reduces this burden and made federated learning possible. FedAvg is
the first realization of this federated learning algorithm, but other techniques such as FedProx,
g-FedAvg, and per-FedAvg have improved on the basic method. The last section of the paper

explores a basic federated learning simulation using readily available NBA stats.

2 Background

2.1 Distributed Learning

Distributed learning features training a machine learning model across multiple nodes. The
main motivation for distributed learning is typically increase parallelization and decrease train-
ing time. Large data sets require powerful resources to efficiently process and use to train a
model. Distributed learning can also serve to reduce communication costs and provide security.
If data is kept on multiple servers, it may not be practical to transfer it all to a central server
for training. This communication also opens up the possibility for privacy concerns. However,
with all the benefits there are certainly drawbacks. Centralized models have the benefit of all
being in the same physical location and so do not run into the same communication issues as

decentralized learning systems. [1]

2.2 Federated Learning vs Distributed Learning

Federated Learning is a type of distributed Learning aimed at gathering data from edge devices,
while maintaining privacy. Both methods allocate training to various nodes, and benefit from
a network of model trainers. Distributed learning aims to train the model on multiple nodes
because of the efficiency of parallel computing. This method of learning’s biggest advantage
is the speed at which a large data set can be used to train a model, which is faster than
a single centralized server could. These nodes are connected together with fast connections
such as physical cable. In contrast, Federated learning can be slower at training models than a
centralized server could because of the large communication costs. Federated learning allocated
training to users’ edge devices so that sensitive data never has to leave the device. Data is not
collected in a central location and only weights are communicated between nodes. Magnitudes
more nodes participate in federal learning compared to a typical distributed learning method.
These nodes are not connected together by high speed networks, but rather through more

expensive and slower networks such as WiFi or wireless 5G cellular networks.

2.3 5G/6G and Federated Learning

Federated learning has become a practical training algorithm thanks to ever advancing wireless
networks that connect all our devices. Modern day requirements for wireless networks include
enhanced mobile broadband, ultra-reliable and low latency communications and massive ma-

chine type communications. [2] This emphasis on massive machine type communications is

what has strengthened the practical use of federated learning. Before these advances, devices
collecting relevant data were not connected enough to communicate to train a ML model. Wire-
less networks are now designed to connect everything including smart phones, IoT devices, and
other devices all collecting real world data. Federated learning thrives on this prime infor-
mation that is now accessible. These performance results have been made possible with the
incorporation of technologies such as Massive MIMO, orthogonal frequency division modulation
(OFDM), and the use of millimeter waves (mmWaves). Massive MIMO enables the utilization
of large antenna arrays that are is infinitely scalable. Massive MIMO also allows for precise
beam forming that points the signal right at the users to provide strong power and a high
SNR. OFDM was standardized in 4G, but is still the modulation scheme of modern networks
and WiFi. OFDM makes efficient use of the frequency spectrum by splitting the signal into
64 different frequencies that do not interfere with each other during physical transmission and
provide a constant gain over the channel. Finally, the increase in use of wireless networks has
made use of mmWaves practical. These signals have high loss, but bay stations placed close
enough together allows high volumes of data to be transmitted. These mmWaves can be uti-
lized in cities where the massive amount of data collecting sensors can be tapped for training
data. Increases in device connection will be a prime concern in the adoption of 6G, which
will enable even more communication between devices and easier implementations of federated
learning. In the future, federated models may rely solely on the 5G/6G wireless network to

connect devices.

2.4 1IID vs Non-1ID

A data set that is independent and identical distributed (IID), contains data samples that all
share the same underlying distribution as well as being statistically independent. IID data sets
are easier to handle and produces more accurate models when compared to non-IID data sets.
Non-IID data sets contain heterogeneous data samples which vary in size, dependency, and
distribution. Unfortunately, many data sets we find in the world are non-IID and so methods
to deal with this issue are essential to develop. This is contrary to the data set in the NBA

case study, which is particularly IID, greatly aiding model accuracy.

5G Usage scenarios

Enhanced Mobile Broadband

Gigabytes ina second
3D video, UHD screens

Work and play in the cloud
Smart Home/Building
Augmented reality

Industry automation

Mission critical application,

e.g. e-health
Self Driving Car

Massive Machine Type Ultra-reliable and Low Latency
Communications Communications

Figure 1: ITU Requirements for 5G Networks, Courtesy of [2]

3 Federated Learning

Federated learning is training a centralized model from decentralized data. A primary moti-
vation to use this learning method is to preserve privacy, while accessing the large amounts
of data scatter across various devices. Federated learning models are powered by the sensitive
data of personal cellular devices. Even anonymous personal data can lead to security concerns
when combined with other data. This method eliminates any worries of privacy leaks by never
communicating raw data, but rather just the bare minimum to update the central model. In
a basic federated learning model, a central server will hold a global model which is updated
by selected nodes after each round. At the beginning of each round the current model is sent
to all clients. A subsection of these clients are chosen to train the model and return training
data back to the central server to be averaged together. A single round can take a long time to
process as the central server waiting for clients to return training data. Low participation keeps
rounds quick. Client updates are usually delayed because of communication costs. Clients will
typically only participate in the training if the device is charged, plugged in, and connected to
their home WiFi. Some key issues that federated learning is able to overcome is Non-IID data

sets, massively distributed data, and limited communication among nodes.

3.1 FedSGD and FedAvg

Gradient descent is a popular and powerful tool that is used to minimize cost functions and
ultimately train models. A successful variation of gradient descent is stochastic gradient de-
scent (SGD). This optimization method is the starting point for FederatedSGD (FedSGD).
Specifically, large-batch synchronous SGD is used because there is little cost in involving lots of
clients. The simplest implementation of federated learning is FedSGD, which trains the model
on edge devices using stochastic gradient descent. A typical implementation of FedSGD will
have each client k compute a gradient from the current model and its local data. These gra-
dients are averaged together at the central server and used to make one gradient descent step
to update the model. FederatedAveraging (FedAvg) takes this approach, but allows the edge
devices to perform multiple rounds of training before reporting back its calculated gradient.
The computations per round of the FedAvg algorithm are controlled by C, the fraction of clients
training the model, E, the training passed each client makes per round, and B, the size of the
mini-batch of data. FedAvg becomes FedSGD when C = 1, B = infinity, and E = 1, in other
words when all client makes one training pass over the entirely of its local data per training

round. Slow clients tpyically dropped for speed [3]

3.2 FedProx

FedAvg is an ideal federated training method if the model is being fed an IID data set. Non-IID
introduces new factors that may cause inaccuracies in the basic FedAvg model. FedProx is a
federated training method based on FedAvg that aims to make the algorithm better at handling
heterogeneous data. Local devices with extreme data will provide extreme gradients that can
skew the overall gradient step. FedProx fixes this problem by introducing a proxy term to
the objective function being optimized. This proxy term provides two main benefits: extreme
local gradients will be kept in check and clients are able to perform a variable amount of local
iterations each round. Because FedAvg allows for multiple local training rounds per update,
a device has time to produce an extreme gradient, and then compound this gradients after
successive weight updates. Once the training round is finished and gradients averaged, this
extreme gradient can throw off the overall average. The proxy term restricts the local updates
and keeps the local weights close to the global weights. This also allows the safe incorporation
of a variable amount of work from each device. This makes the process more efficient by letting
fast working devices to continue working, instead of making them wait for the slower devices

such as in FedAvg. This also ensures that the same type of slow devices are not always dropped,

flw) =

I

% 1
—F h F = — i(w).
Fi(w) where Fy(w) = -~ i;kf(w)

(a) FedSGD and FedAvg Objective Function

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 is the learning rate.

Server executes:

initialize wy

for eachround ¢t =1,2,... do
m < max(C - K, 1)
S; < (random set of m clients)
for each client £ € S; in parallel do

wk 1 < ClientUpdate(k, w)

Mt = D g s, Mk
Wit1 4= D pes, ;—’iwa /l Erratum®

ClientUpdate(k, w): // Run on client k
B «+ (split P}, into batches of size B)
for each local epoch 7 from 1 to E do

for batch b € B do
w +— w — VL (w;b)
return w to server

(b) FederatedAveraging (FedAvg) Training Method

Figure 2: FederatedAveraging (FedAvg) Algorithm, Courtesy of [3]

min Ay (w; wt) = Fy(w) + gHw — w2,

w

(a) FedProx Objective Function

Algorithm 2 FedProx (Proposed Framework)

Input: K, 7T, i, 7, w, N,p, k=1,--- N
fort=0,--- . T —1do
Server selects a subset S; of K devices at random (each
device k is chosen with probability py)
Server sends w! to all chosen devices

Each chosen device k € S; finds a wi™
which is a ~7i-inexact minimizer of: w! " =~

arg min,, hi(w; w') = F(w) + §|lw — w*||?
Each device k£ € S; sends wiﬂ back to the server

s t+1 __ 1 t+1
Server aggregates the w’s as w'™ = & >, o w)

end for

(b) FedProx Training Method

Figure 3: FedProx Algorithm, Courtesy of [4]

causing an improperly trained model [4]

3.3 qg-FedAvg

While the models trained using FedAvg or FedProx algorithms yield acceptable global accuracy,
this performance does not always carry over to all local devices. Particularly with non-I1ID data,
simply optimizing the cost function may disproportionately favor some devices over others. A
model’s performance between different devices can vary wildly because of local data varying
in both size and distribution. However, global accuracy should not sacrificed in the name of
device level fairness and a balance between the two must be found. q-FedSGD and g-FedAvg are
algorithms that performs well for all devices without dropping global accuracy. Both algorithms

optimize the same objective function in order to achieve this fairness. The objective function

is called g-Fair Federated Learning (¢-FFL) and including a q term that empathizes devices
with large loss / gradients in order to improve the performance on those devices. This q term
can be scaled to vary device fairness and increases proportionally with the value of q. If q is
0, ¢-FedSGD becomes FedSGD and q-FedAvg becomes FedAvg. Like before, the q-FedSGD
varient limits local training to one round while FedAvg allows for multiple local training rounds
before global convergence. It is observed that the g-FedAvg algorithm can reduce the variance
of accuracies across devices by 45% on average when compared to FedAvg while maintaining

the same level of global accuracy. [5]

3.4 per-FedAvg

Per-FedAvg is similar to q-FedAvg in that both training algorithms are focused on increasing
local device model accuracy. A model which is optimized by simply minimizing the global
objective function is not personalized to specific local data. The per-FedAvg algorithm achieves
local accuracy by requiring the global model to be trained by the local device before it is ready
to use. Instead of a fully optimized model as as the global model, the global model is a initial
point for training shared between all users. The global model is optimized using local data,
thus a personalized model is produced. The objective function includes a gradient step so that
once the function is optimized, a good model can be found on all devices after one local gradient
step. It is analogous to breaking in a new pair of football cleats so that they fit properly. A
single global model is not accurate enough for all users, but the right global model that can be

easily tweaked by the local devices into their own personalized model.

4 Case Study: NBA FedSGD

A simple linear regression model that predicts NBA season win percentage is trained using the
FedSGD algorithm. The study is intended to provide some context to the federated learning
process. Data is obtained from NBA.com and is comprised of 10 seasons ranging from 2008
to 2019. The data is split up into training and testing data, with the two most recent seasons
being the testing data. 6 parameters are chosen including 3-Point %, 3-Point Attempts, Field
Goal %, Turnovers, Assists, and Offensive Rebounds. Gradient descent is used to optimize
the MSE cost / optimization function of the linear regression mode. The simulated federated
learning features a global model that is updated each epoch by the average gradient of a random

selection of NBA teams.

10

m

: Pk
min f,(w) = > P FE (w),

° 4T

(a) ¢-FFL Objective Function

Algorithm 1 ¢-FedSGD

1: Input: K, T,q, 1/L,w’, pp,k=1.---,m

2. fort=0,---,T—1do

3 Server selects a subset S; of K devices at random (each device k is chosen with prob. pg)
4: Server sends w' to all selected devices

5 Each selected device k computes:

A} = F(w")VF(w')
hj. = gFg_l[wt]||VFk(u.r£}||2 + LF] (w')

6: Each selected device k sends A} and hj, back to the server
7: Server updates w't! as: T At
t+1 t kES, Dk

mw =N — ———
t
Ekes, hy,

3: end for

Algorithm 2 ¢-FedAvg

1: Input: K, E, T,q,1/L, 7, w?, P k=1, ,m

2: fort=0,---,T—1do

3 Server selects a subset S; of K devices at random (each device k is chosen with prob. p;.)
4: Server sends w' to all selected devices

5 Each selected device k updates w’ for E epochs of SGD on Fj. with step-size 1) to obtain mﬁfl
6

Each selected device k computes:
Aw}, = L(w' — i';"']]

A} = Fl(uw')Awy,
h}, = ng_I{wi}||&u.ri||2 + LF}(w")

7: Each selected device k sends A} and k] back to the server
8: Server updates w't! as:

i

t41 b ke s, Dk

T =) — ———mmmm—
t
EkES, b,
9: end for

(b) g-FedAvg Training Method

Figure 4: g-FedAvg Algorithm, Courtesy of [5]

11

n
min, F(w)

— Z filw — aV fi(w)),

(a) per-FedAvg Objective Function

Algorithm 1: The proposed Personalized FedAvg (Per-FedAvg) Algorithm

Input:Initial iterate wy, fraction of active users 7.
for k: 0to K — 1 do
Server chooses a subset of users Ay, uniformly at random and with size rn;
Server sends w;, to all users in Ay;
for alli € Ay do
Set w,iH,O = W
fort:1to7do
Compute the stochastic gradient V f; (w?, 11 D?) using dataset D;

Set wk+1 = wk+1 t—1 @sz(wkﬂ —1:Dh);

2 DY
Set wk+1,t = wk+1,t—1 B — aVv fZ(wk:+1 t—1, D))vfi(warl ¢+ Dy'):
end for .
Agent i sends wy ., . back to server;
end for

1 i .
Server updates its model by averaging over received models: wy 1 = ;- > 7.0 4wy 41
end for

(b) per-FedAvg Training Method

Figure 5: per-FedAvg Algorithm, Courtesy of [6]

12

4.1 Federated vs Centralized Learning

The federated model performed almost exactly the same to the none federated model. A
homogeneous data set contributed to this results and a more heterogeneous data set may have
had more trouble being trained with federated learning. However, this study promotes the use
of practical federated learning. The model created is able to converge into a reliable predictor
without the need to centralize data and access potentially private data. A central server can

train this NBA win predictor without ever seeing any of the raw data possessed by the teams.

4.2 Model Improvements

More complicated versions of the federated learning are not utilized in this example for sim-
plicity and practicality. Communication costs could be cut further with the implementation
of FedAvg, which would require less overall training rounds. The data is quite homogeneous,
which discourages the use of ProxFed, g-Fed, Per-FedAvg. Simplicity makes the study easier

to analyze, but also increases efficiency and doesn’t incorporate unneeded complexity.

4.3 FEvaluation

The trained model was evaluated using mean absolute percent error (MAPE), mean absolute
error (MAE), mean square error (MSE), and root mean square error (RMSE), scoring 29.36,
11.387, 185.29, and 13.6 respectively. The MAPE score of 29.36% means each prediction is off
about 30% and the MAE means each prediction has an error of about 11%. For example, the
Golden State Warriors in the 17-18 season had a winning percentage of 70.7%, but the model
predicted 60.3%.

13

References

1]

Verbraeken, J., Rellermeyer, J. S., Verbelen, T., Kloppenburg, J., Katzy, J., & Wolting, M.
(2020, March). A survey on Distributed Machine Learning. ACM Digital Library. Retrieved
April 25, 2023, from https://dl.acm.org/doi/pdf/10.1145/3377454

IMT Vision — Framework and overall objectives of the future development of IMT for 2020
and Beyond. International Telecommunication Union. (2015). Retrieved May 6, 2023, from
https://www.itu.int /dmspubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!'PDF-E.pdf

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2023, January
26). Communication-efficient learning of Deep Networks from Decentralized Data. arXiv.org.

Retrieved April 25, 2023, from https://arxiv.org/abs/1602.05629

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020, April 21).
Federated optimization in Heterogeneous Networks. arXiv.org. Retrieved April 27, 2023,
from https://arxiv.org/abs/1812.06127

Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2020, February 14). Fair Re-
source Allocation in Federated Learning. arXiv.org. Retrieved May 4, 2023, from

https://arxiv.org/abs/1905.10497

Fallah, A., Mokhtari, A., & Ozdaglar, A. (2020). Personalized federated learning
with theoretical guarantees: A model ... NeurIPS 2020. Retrieved May 4, 2023,
from https://proceedings.neurips.cc/paper/2020/file/24389bfedfe2eba8bf9aad203ad4cdad-
Paper.pdf

Bellwood, L., & McCloud, S. (2016). Google Federated Learning. Google. Retrieved May 4,
2023, from https://federated.withgoogle.com/

14

